Indigo Dye

Indigo dye is an important dyestuff with a distinctive blue color. The natural dye comes from several species of plants, but nearly all indigo produced today is synthetic. Among other uses, it is used in the production of denim cloth for blue jeans. Indigo is a frequency range of visible light, from 440 to 420 nanometers in wavelength, placing it between blue and violet. The human eye is relatively insensitive to indigo frequencies, and some otherwise well-sighted people cannot distinguish indigo from blue and violet. A variety of plants have provided indigo throughout history, but most natural indigo is obtained from plants in the genus Indigofera, which are native to the tropics. In temperate climates indigo can be obtained from woad (Isatis tinctoria) and dyer's knotweed (Polygonum tinctorum), although the Indigofera species yield more dye. The primary commercial indigo species in Asia was true indigo (Indigofera tinctoria, also known as Indigofera sumatrana). In Central and South America the two species Indigofera suffructicosa and Indigofera arrecta (Natal indigo) were the most important.

Indigo is a dark blue crystalline powder that melts at 390°–392°C. It is insoluble in water, alcohol, or ether but soluble in chloroform, nitrobenzene, or concentrated sulfuric acid. The chemical structure of indigo corresponds to the formula C16H10N2O2. The naturally occurring substance is indican, which is colorless and soluble in water. Indican can easily be hydrolyzed to glucose and indoxyl. Mild oxidation, such as exposure to air, converts indoxyl to indigo.

Several simpler compounds can be produced by decomposing indigo; these compounds include aniline and picric acid. The only chemical reaction of practical importance is its reduction by urea to indigo white. The indigo white is reoxidized to indigo after it has been applied to the fabric.
Indigo treated with sulfuric acid produces a blue-green color. It became available in the mid-1700s. Sulfonated indigo is also referred to as Saxon blue or indigo carmine.

Indigo is a challenging dye to use because it is not soluble in water; to be dissolved, it must undergo a chemical change. When a submerged fabric is removed from the dyebath, the indigo quickly combines with oxygen in the air and reverts to its insoluble form. When it first became widely available in Europe in the sixteenth century, European dyers and printers struggled with indigo because of this distinctive property.

A preindustrial process for dyeing with indigo, used in Europe, was to dissolve the indigo in stale urine. Urine reduces the water-insoluble indigo to a soluble substance known as indigo white or leucoindigo, which produces a yellow-green solution. Fabric dyed in the solution turns blue after the indigo white oxidizes and returns to indigo. Synthetic urea to replace urine became available in the 1800s. Another preindustrial method, used in Japan, was to dissolve the indigo in a heated vat in which a culture of thermophilic, anaerobic bacteria was maintained. Some species of such bacteria generate hydrogen as a metabolic product, which can convert insoluble indigo into soluble indigo white. Cloth dyed in such a vat was decorated with the techniques of shibori (tie-dye), kasuri, katazome, and tsutsugaki.

Two different methods for the direct application of indigo were developed in England in the eighteenth century and remained in use well into the nineteenth century. The first method, known as pencil blue because it was most often applied by pencil or brush, could be used to achieve dark hues. Arsenic trisulfide and a thickener were added to the indigo vat. The arsenic compound delayed the oxidation of the indigo long enough to paint the dye onto fabrics.

The second method was known as china blue due to its resemblance to Chinese blue-and-white porcelain. Instead of using an indigo solution directly, the process involved printing the insoluble form of indigo onto the fabric. The indigo was then oxidized in a sequence of baths of ferrous sulfate. The china blue process could make sharp designs, but it could not produce the dark hues possible with the pencil blue method.